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A Blockchain-Enhanced Reversible Watermarking
Framework for End-to-End Data Traceability in
Federated Learning Systems

1% Reda Bellafgira
IMT Atlantique
INSERM UMR 1101 Latim
Brest, France
reda.bellafqira@imt-atlantique.fr

Abstract—In federated learning (FL) environments, ensuring
data traceability presents significant challenges, particularly
when data move between multiple entities such as data centers,
edge nodes, and data scientists. This paper presents a novel
framework that combines robust reversible watermarking and
blockchain technology to achieve end-to-end traceability of med-
ical images in a FL context. Based on the watermark, it becomes
possible to interrogate the blockchain about the life cycle of an
image to ensure data traceability, authenticity, and integrity. We
use a histogram shifting-based reversible watermarking scheme
with a new overflow management procedure, integrated with a
private blockchain that records all watermarking and verification
operations. Experimental results demonstrate the effectiveness of
our approach in terms of watermark robustness considering a
chest X-ray image dataset. We further show that watermarking
does not interfere in the training and inference phase of a
VGG-16 classification model for a Covid-19 medical database.
A model trained on protected data can be used to classify non-
watermarked data as well.

Index Terms—Reversible Robust Watermarking, Blockchain,
Histogram shifting, Federated Learning.

I. INTRODUCTION

Federated Learning (FL) has emerged as a paradigm in
machine learning, enabling collaborative model training while
preserving data privacy through decentralized computation.
This approach is particularly valuable in healthcare [1]-[3],
where strict regulatory requirements like HIPAA and GDPR
traditionally limit data sharing, despite the potential benefits of
leveraging vast amounts of sensitive patient data for advancing
medical research and improving diagnostic capabilities.

In a typical FL environment [4], multiple entities collaborate
in a structured hierarchy: data providers (DPs) maintain their
local datasets, a central server (CS) orchestrates the training
process, and data scientists (DS) develop models without
direct access to the sensitive training data. Each data provider
operates through an edge node that processes data locally and
interfaces with the central server, which manages communica-
tions between data scientists and the federated network of edge
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nodes. This architecture enables data scientists to train models
across distributed datasets while maintaining data provider
privacy and regulatory compliance.

Traditional security mechanisms like data watermarking and
blockchain technology offer partial solutions to these chal-
lenges. Watermarking can embed metadata to record identifiers
that can be used to trace the data back to its owner [5], [6],
integrity proof [7]-[9], authenticity proof [10], [11]. However,
watermarking alone struggles with the complex data flows in
FL environments where multiple entities interact without direct
data transfers. Meanwhile, blockchain provides immutable,
transparent record-keeping [12] but lacks mechanisms for
identifying the source of data leaks.

This paper presents a novel framework that synergistically
combines robust reversible watermarking with blockchain
technology to achieve end-to-end traceability of medical im-
ages in FL environments. Our approach integrates a histogram
shifting-based reversible watermarking scheme featuring an
new overflow management procedure with a private blockchain
that records all watermarking and verification operations.
The blockchain stores cryptographic hashes of both original
and watermarked images for integrity verification, along with
encrypted watermarking parameters that enable watermark
removal and ownership validation. Each blockchain entry is
cryptographically signed by the data provider to authenticate
both the watermarking operations and the associated data.

The proposed watermarking algorithm employs histogram
shifting on prediction errors, chosen for its computational
efficiency and high capacity. To enhance robustness against
various attacks, we implement a fixed 256-bit watermark
with duplication to utilize the available capacity, employing
majority voting for watermark recovery. Experimental results
demonstrate our approach’s effectiveness in maintaining wa-
termark robustness while preserving image quality on a chest
X-ray dataset. Furthermore, we show that the watermarking
process does not adversely affect the training or inference
capabilities of a VGG-16 classification model for COVID-19
diagnosis, with models trained on protected data maintaining
their effectiveness on non-watermarked data.



The remainder of this paper is organized as follows: Section
II presents background information and related work on digital
watermarking, blockchain technology, and their combined
applications. Section III details our proposed method for end-
to-end traceability. Section IV presents experimental results
and analysis, and Section V concludes with a discussion of
implications and future research directions.

II. BACKGROUND & RELATED WORK
A. Digital Watermarking

Digital watermarking [13] is a technique used to embed
identifiable and traceable information within digital data. The
embedded information, or “watermark,” is designed to be
imperceptible to human users while still being detectable and
verifiable by authorized systems or individuals. Watermarking
can assert several security properties, such as ownership [11],
[14] and traceability [15], [16], by including the owner’s ID
and the receiver’s ID in the embedded message, respectively.
Watermarking is a symmetric process, where the same secret
key is used to embed and extract the watermark from the data.

The watermarking properties include imperceptibility, ro-
bustness, reversibility, and capacity. Imperceptibility refers to
the watermark’s hiddenness, ensuring it does not degrade the
original content’s quality. Robustness is the watermark’s abil-
ity to resist tampering, removal, or degradation. Reversibility
allows watermark extraction without affecting the original
data, while capacity is the amount of information that can
be embedded without compromising other properties. These
properties must be carefully balanced to ensure sufficient
protection and traceability while maintaining usability and
quality.

Watermarking consists of three steps: watermark generation,
watermark embedding, and watermark extraction. Watermark
generation involves creating a unique watermark from a mes-
sage using a hash function and a secret key. Watermark
embedding incorporates the watermark into the data using
the secret key by modifying the image’s pixel values or
other properties. Watermark extraction retrieves the embedded
watermark using the secret key to verify ownership or trace the
origin of a leak. Robust watermarking guarantees copyright
protection but does not consider insertion distortion, while
reversible watermarking allows lossless watermark extraction
and retrieval, maintaining data integrity. However, reversible
watermarking schemes are often fragile and unable to resist
attacks. Robust reversible watermarking (RRW) combines both
benefits, making it suitable for sensitive applications such as
medical imaging, military, and remote sensing.

Existing RRW solutions typically combine two watermark-
ing schemes, one robust and one reversible, using various
techniques such as embedding watermarks in different image
domains [17], pseudorandom code indexing [18], or Pixel
Value Ordering (PVO) [19], [20]. However, these schemes
often suffer from high distortion, making them unsuitable
for applications involving training Al models on watermarked
data, such as in Federated Learning environments. In Section
III, we propose a histogram shifting modulation based on

an overflow management procedure that does not impact Al
model accuracy, as demonstrated in Section I'V.

B. Blockchain

Blockchain is a decentralized and distributed ledger tech-
nology that records transactions in a secure, transparent, and
immutable manner [21]-[24]. A blockchain consists of a series
of blocks, each containing a set of transactions, with each
block linked to the previous one through a cryptographic hash.
This structure ensures that once data are recorded in a block,
they cannot be altered without changing all subsequent blocks,
making blockchain highly resistant to tampering and fraud.
The consensus mechanisms employed, such as Proof of Work
(PoW) or Proof of Stake (PoS), validate transactions across a
network of nodes, ensuring that all participants in the system
agree on the current state of the ledger.

Blockchain technology offers several significant advantages
in terms of data security. First, it provides an immutable record
of all data access and watermarking activities, ensuring a
secure and verifiable audit trail. By referencing the blockchain,
data ownership can be quickly validated, and data integrity can
be verified. Moreover, the decentralized nature of blockchain
allows multiple copies of the ledger to be stored by different
entities, enhancing security and reliability. Finally, blockchain
facilitates transparent data sharing in research collaborations,
enabling trustworthy and verifiable exchange of information.

C. Combined Watermarking-Blockchain Solutions

Several existing solutions combine watermarking and
blockchain technologies to ensure data traceability. Liu et
al. [25] propose a data traceability model for edge nodes,
consisting of a blockchain network and an internal network.
In their model, data traceability within the internal network
is guaranteed using digital watermarking. The blockchain
network is composed of master nodes, which are elected by
edge nodes based on their computing power. When data moves
outside its originating area, it is traced through the blockchain
network.

Peng et al. [26] implement a secure digital copyright man-
agement system based on a public blockchain. In their system,
data providers and data users engage in direct trade, with
copyright and transaction data logged in the blockchain. To
provide data traceability, the embedded watermarks contain
transaction information. Zheng et al. [27] present a copyright
protection scheme for videos that combines blockchain and
robust reversible watermarking. Their method extracts video
keyframes using the image correlation coefficient method.
The robust watermarking scheme is based on the Contourlet
transform, QR decomposition, and SIFT algorithm, while the
reversible watermarking scheme relies on the Arnold Transfor-
mation (Cat Map). After identity authentication, the signature
of the robust watermark is logged in the blockchain.

However, these methods do not address the impact of
watermarking on the performance of Al models. Additionally,
they do not provide details on how the blockchain could be
used for watermark extraction.



III. PROPOSED METHOD
A. System architecture & Threat model

As presented in the Introduction, this work is part of the
European project PAROMA-MED, which aims to develop a
framework to train Al models by data scientists on medical
images belonging to different institutions using Federated
Learning. When a Data Scientist (DS) requests the Central
Server (CS) to start a federated learning session, the Data
Providers (DP) send their datasets to their edge nodes to train
the Al model on them. In this step, the DPs first watermark
their datasets using their ID and the ID of the DS as a message
in order to allow ownership verification and traceability. They
create a transaction block that contains the hash of the original
and the watermarked dataset. Once the Edge Node receives the
watermarked dataset and its corresponding transaction info, it
verifies if the hashes match to check the integrity of the dataset.
Then, it adds the block with its signature to the blockchain.
Once the blockchain is updated, the Edge Node shares it
with the other edge nodes to provide access to the updated
blockchain.

Regarding the threat model considered in the federated
environment, here are our security hypotheses. First, the edge
nodes at the edge of the networks of data providers are
considered secure. Then, we assume that there are secure
communication channels in the platforms of data providers,
ensured by authentication and encryption processes. Each data
provider has a pair of encryption keys: a private key used for
signatures and a public key used for encryption. Finally, while
external users are considered honest but curious, i.e., they
respect the instructions for processing provided by the data
provider, if they gain access to the data, they may redistribute
the data or leak it unintentionally or maliciously.

B. Reversible Watermarking using Histogram Shifting of Pre-
diction Errors

This paper presents a reversible watermarking scheme based
on the histogram shifting of prediction errors. The algorithm
employs a cross-shaped prediction kernel and includes over-
flow management to ensure perfect reconstruction. In this
section, we present the main three steps of our scheme,
which are the generation, embedding, and extraction of the
watermark.

1) Watermark generation: The message M to embed can
be of variable size and include different metadata, depending
on the use case. For example, to ensure ownership, the sender
ID can be embedded. To ensure traceability, the receiver
ID (data scientist ID) can be added. The message of type
string is converted into a watermark coded in 256 bits using
the HMAC-SHA256 as a MAC algorithm parametrized with
SHA256 as a hash function [28] and a secret key Sy, as
presented in the following equation:

W = HMAC-SHA256(M, S},) (1)

In our work, the watermark is encoded in 256 bits and the S},
is coded into 128 bits, which is different for each image in

order to avoid having the same watermarked output if an image
is watermarked twice. This choice reinforces the security of
our scheme.

2) Watermark embedding: Let us first define the notation
used throughout this paper. Let I denote the original image
of size M x N encoded in 8 bits, [,, the watermarked image,
W the binary watermark sequence, K the prediction kernel,
ty; the histogram shifting threshold, s the stride parameter,
P(i,j) the predicted value at position (,7), and e(7, ) the
prediction error at position (7, j). For prediction, we employ
a cross-shaped kernel K defined as: [0 1/4 0; 0 1/4 0; 0 1/4
0] which computes the mean of the four nearest neighbors.

Algorithm 1 Watermark Embedding
Require: Original image I, watermark bits W, kernel K,
stride s, threshold t;,;
Ensure: Watermarked image I,
Iy =1 > Create copy of original image
2: overflow_list := () > Initialize overflow list
3: idx_wat := 0 > Watermark bit index
4: for y :=0to M — ky, step s do > kj is kernel height
5: for z :== 0 to N — k,, step s do > k,, is kernel width
6: region = I,[y : y + kp,z :  + ky)
7 Py + % 2+ %) := 3 (region ® K) > Predict
center pixel

8: center := I, [y + %z + Eu]
9: e = center — P(y + %,z + Eu)
10: if e > 0 then
11: if center = 255 or center = 254 then
12: overflow_list.append(7) >4 e {0,1}
13: Loly+5 o+ ke) = Iy+ 5 o+ 2] 4
14: idx_wat := idx_wat +1
15: continue
16: end if
17: if e > t5; then
18: ew =€e+th +1
19: else
20: ey = 2e + Widx_wat mod len(W)]
21: end if
22: Loly+5 o+ 5] = Ply+ %2, 2+ E) +e,
23: end if
24: idx_wat := idx_wat +1
25: end for
26: end for
27: for bits in overflow_list do
28: Recalculate prediction and embed overflow bits start-
ing from the last block of the image
29: end for
return [,

The watermark embedding procedure is presented in Alg.
1. The algorithm processes the image in blocks using a sliding
window approach with stride s. For each position (y,x), we
consider a 3 x 3 neighborhood centered at (y + %, T+ %w),
where kj, and k,, are the kernel height and width respectively.



The predicted value P(y+ %, :1:—&—%“’) is computed by applying
the kernel K to the neighborhood (step 6 in Alg. 1):
kp, k

P(y+ -5 + 7) = Z(region@ K)

where © denotes element-wise multiplication. The prediction
error e is then computed as the difference between the center
pixel value and its prediction:

kp, kr, K

ke

To handle overflow cases and ensure perfect reconstruction,
special consideration is given to pixels with values near the
maximum intensity (2% — 1 = 255 for 8-bit images). For each
block:
o If the center pixel value equals 255, we store the value O
in an overflow vector and leave the pixel unmodified
o If the center pixel value equals 254, we increment the
pixel value by 1 and store the value 1 in the overflow
vector
For non-overflow cases, the embedding function modifies the
prediction error according to the following rule:

{e—i—thi—i-l if e >ty
Cw —

2e +w if 0 <e <ty

where e,, is the modified error, t;; is the histogram shifting
threshold, and w is the watermark bit to be embedded. This
function creates a gap in the histogram to accommodate the
watermark bits while maintaining reversibility. The water-
marked pixel value is then updated as:

kh k kh

w kw
I —_ _ :P —_ —_
wly + 2,x+ 2] (y + 2,x+ 2)+ew

After processing all blocks in forward order, the algorithm
performs a second pass starting from the end of the image to
embed the overflow vector. This backward embedding ensures
that the overflow information is preserved and can be used
during extraction to perfectly reconstruct the original image.

3) Watermark extraction: The extraction process begins
by analyzing the watermarked image using the same kernel
and stride parameters as during embedding. For each selected
position based on the secret key, the algorithm calculates
the prediction value P(i,j) using the cross-shaped kernel
and determines the prediction error e, (i, j) as the difference
between the actual pixel value and the predicted value. When
a positive error is detected, the algorithm checks if the pixel
has maximum intensity (255). These positions are tracked as
overflow positions for later processing. For each valid position,
the original prediction error and watermark bit are extracted
using the extraction function which is defined as :

(e w) = (ew — tpi — 1,null)
e, w (Lew—(eu,QmOdQ)J’ew mod 2)
(2)
where e, is the modified error from the watermarked image, e
is the recovered original prediction error, and w is the extracted
watermark bit.

if ey > 2tp; +1
otherwise

Since our watermark consists of 256 bits while the embed-
ding capacity is significantly larger, we utilize this additional
capacity to enhance robustness. During embedding, the 256-bit
watermark is repeatedly embedded until the available capacity
is filled. During extraction, we apply a majority voting scheme
on the multiple copies of each embedded bit. For example, if
a particular bit position contains more ls than Os across all
extracted copies, the final recovered bit is determined to be
1. This redundancy-based approach significantly increases the
robustness of the watermark against various types of noise and
attacks, as errors in individual bit positions can be corrected
through the voting process.

After completing the main extraction process, the algorithm
handles the overflow cases using the tracked positions to
restore the original pixel values. Alg. 2 ensures perfect recon-
struction of the original image through two key mechanisms:
the bijective mapping in the histogram shifting operation,
which guarantees reversibility of the embedding process, and
the accurate handling of overflow cases.

4) Combination of watermarking and Blockchain: Another
originality of our work is the fact that the watermark em-
bedding and extraction operations are both logged in the
blockchain. This allows a life-cycle traceability of the images.
The intervention of the blockchain with the watermarking
operates as follows: After each watermarking or extraction
operation, a new block is appended to the blockchain.

Each block contains the following information: block num-
ber, timestamp, hash of the previous block, and the encrypted
version of the message, and the secret key (encrypted using
the PAROMA-MED public key). Moreover, it contains the
hash of the original image and the hash of the watermarked
image. Additionally, each block includes its own hash to
ensure integrity, along with a digital signature of the block
hash, created using the private key of PAROMA-MED. This
digital signature verifies the authenticity of the block.

Regarding the Watermark extraction using the blockchain.
To access a specific block in the blockchain, a hash of the sus-
pect image is computed, and searched in the blockchain. Thus,
to detect whether an image was logged in the blockchain,
the following Alg. 3 is implemented. When an image X is
suspected to belong to PAROMA-MED, its hash is computed
and searched in each block of the blockchain B. If the
computed hash exists in the current block, return the message
stored in the block. Else, extract the watermark W from
the image using the block’s secret key Sj. If the extracted
watermark W equals the watermark in the block, return M;
the message in the block. If there is no match, continue to the
next block. At the end, if no matching block is found, then no
watermark has been detected, the image X is not part of the
blockchain B.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset and Experimental Setup

The experimental validation of our proposed scheme was
conducted using a database of chest X-ray images for COVID-
19 positive cases along with Normal and Viral Pneumonia



Algorithm 2 Watermark Extraction

Algorithm 3 Watermark detection in the blockchain

Require: Watermarked image I, kernel K, stride s, thresh-
old ¢, secret key K
Ensure: Extracted watermark Wy;,q1, Recovered image I,

1: I, =1, > Initialize recovered image
2 Wepr =10 > Initialize extracted watermark
3: overflow_positions := ()

4: idx_wat := 0

5: Wase := zero matrix of size 256 x 2 > For majority

voting
6: for y :=0 to M — kj, step s do
7: for x :=0to N — k,, step s do
8: region = I,.[y : y + kp, x : & + k|
9 P(y+%,x+%) = (region ® K)

10: center := I,.[y + %,m + %”]

11: ew 1= center — P(y + %z 4 k)

12: if e, < 0 then

13: idx_key := idx_wat +1

14: continue

15: end if

16: if center = 255 then

17: overflow_positions.append(y + %, x4+ %”)

18: idx_wat := idx_wat +1

19: continue

20: end if

21: e, bit := extraction_value(e,,, tp;) > Eq: (2)

22: if bit € {0,1} then

23: Wezt.append(bit)

24: Waselidx_wat mod 256][0] =
Wase [idx_wat mod 256][0] + bit

25: Wase[idx_wat mod 256][1] =
Wase[idx_wat mod 256][1] + 1

26: end if

27: Liy+58 o+ 5] =Py+2 04+ E)4e

28: idx_wat := idx_wat +1

29: end for

30: end for

31: if overflow_positions not empty then

32: overflow_bits := W,,[—len(overflow_positions) :]

33: for i, position in enumerate(overflow_positions) do

34: I,.[position| := I,.[position] — overflow_bits]]

35: end for

36: end if

37: Wfinal = [1 if W256[i] [O]/W256[ZH1] > 0.5 else 0 for 7
in range(256)] return I, Wyina

images, comprising 544893 lung X-ray images ' of size (299,
299) encoded into 8 bits. We utilized the VGG16? architecture
as our base model for classification and performed comparative
analysis between watermarked and non-watermarked datasets.
The experiments were designed to evaluate both the impact
of watermarking on model performance and the robustness of

Uhttps://www.kaggle.com/datasets/dvtiendat/covid-classification-dataset
Zhttps://www.kaggle.com/code/vunhuduc/vgg16-final

Require: Input image X, blockchain B with m blocks
Ensure: Detection result

1: H := SHA256(X)

2: for B; in blockchain B, i € {1,...,m} do

3: if H € B; then

4: return M;

5: end if

6: W := Extract(X, S})

7: if W = W' then

8: return M,

9: end if

10: if no matching block is found then
11: return “No watermark detected”
12: end if

13: end for

the watermarking scheme.

1) Implementation Details: We utilized a pre-trained
VGG16 network fine-tuned for COVID-19 classification
(Covid19, Normal and Viral Pneumonia), with training pa-
rameters set to 30 epochs, batch size of 32, Adam optimizer
with learning rate 0.001, and the dataset split into 80% for
training, 10% for testing, and 10% for validation.

B. Model Performance Analysis

We trained two versions of the VGG16 model: i) Model
trained on original (non-watermarked) dataset and ii) Model
trained on watermarked dataset. Both models were evaluated
on both watermarked and non-watermarked test sets to ensure
comprehensive performance assessment.

TABLE I
PERFORMANCE COMPARISON OF MODELS ON DIFFERENT TEST SETS
Model / Test Set Accuracy Precision Recall F1-Score
Original / Original 0.9536 0.9548 0.9536 0.9539
Original / Watermarked 0.9545 0.9556 0.9545 0.9548
Watermarked / Original 0.9571 0.9579 0.9571 0.9574
Watermarked / Watermarked 0.9500 0.9509 0.9500 0.9503

In Figs. 1 and 2, we present the performances of the model
during training on both the watermarked and original datasets.
The dashed and solid lines represent the watermarked and orig-
inal datasets, respectively. We can observe a slight improve-
ment in the training performance on the watermarked dataset,
which could be explained by the fact that watermarking adds
noise to the data, potentially helping the model generalize
better. Table I presents the results of the accuracy, recall,
precision, and F1 score for four different settings. We can
notice that the results are very similar for all four settings, with
a slight improvement of the watermarked model when tested
on the original test set. This can be attributed to the watermark
acting as a regularizing noise factor, potentially improving the
model’s generalization capabilities.These results demonstrate
that our watermarking scheme does not significantly impact



Fig. 1. Training and Validation Loss vs. Epochs
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the performance of the Al model and may even lead to slight
improvements in some cases.

C. Watermark Robustness Analysis

We evaluated the robustness of our watermarking scheme
against various image processing attacks. The following at-
tacks were implemented: histogram shifting [29] with a shift
value of -10, contrast adjustment with an increase factor of
1.5 and a decrease factor of 0.7 [30], gamma correction with
v = 2.2 [31], standard and adaptive histogram equalization
[32], and Gaussian noise with a mean of 0 and a variance
of 1. We evaluate the robustness of the watermark by using
the bit error rate (BER), which represents the proportion
of bits that are incorrectly decoded during the watermark
extraction process. A BER equal to zero indicates a perfect
match between the embedded and extracted watermarks, while
a BER of 0.5 means that there is no correlation between the
watermarks. In our scheme, the watermark is the HMAC of
the message. Due to the confusion and diffusion properties of
the HMAGC, it is very difficult to find two different messages
whose HMAC values have a BER smaller than 0.3. Therefore,
when the BER is smaller than a threshold of 0.3, it means that

TABLE II
BIT ERROR RATE (BER) UNDER DIFFERENT ATTACKS

Attack Type BER
Histogram Shift

Contrast Increase

Contrast Decrease

Gamma Correction

Histogram Equalization
Adaptive Histogram Equalization
Gaussian Noise 0.20703125
No Attack (Original) 0

cocoococooH

the watermarks match with a high probability. This property
increases the robustness and trustworthiness of our method.
The results in Table II demonstrate near-zero BER across
most attacks, indicating strong robustness of our watermarking
scheme. Perfect reconstruction was achieved in cases where
no modifications were applied to the image, as evidenced by
a BER of 0 for the "No Attack (Original)” case.

D. Embedding Capacity Analysis

The embedding capacity of our proposed approach is deter-
mined by the parameters of the histogram shifting operation,
specifically the kernel size and stride. For an input image
of dimensions (M x N), the total capacity in bits can be
calculated as output_height x output_width where:

M~k
output_height = {hJ +1 3)
S

N - kw
output_width = {J +1 4)
S

where kj, X k,, represents the kernel dimensions and s is the
stride. In our implementation, we utilize a 3 x 3 kernel with a
stride of 3 on images of size 299 %299, yielding a total capacity
of 99 x 99 = 9,801 bits. Given that our watermark is encoded
into 256 bits, we exploit this high capacity by replicating the
watermark sequence to fill the available embedding space.
During extraction, we employ a majority voting scheme on
the replicated watermark bits to recover the original 256-
bit watermark. This redundancy-based strategy significantly
enhances the robustness of our watermarking scheme provided
by the majority voting mechanism, while taking advantage of
the scheme’s high embedding capacity. The complete imple-
mentation of our approach is available on GitHub?, enabling
reproducibility of all experimental results.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel framework for ensuring data
traceability throughout the life cycle of medical images in
federated learning environments. Our framework integrates
robust reversible watermarking with blockchain, employing
histogram shifting on prediction errors with an overflow man-
agement procedure to guarantee reversibility. The framework’s
security is achieved through blockchain validation, digital

3https://github.com/Bellafqira/HS_Wat_Blockchain



signatures, and cryptography, thereby ensuring data integrity,
authenticity, traceability, and ownership verification. Testing
on a medical dataset using a VGG16 model has demonstrated
that our framework not only preserves model performance but
shows slight improvement in accuracy. The method exhibits
robust protection against various attacks, leveraging the high
capacity of histogram shifting and the error-correction capa-
bility of majority voting on redundant watermark bits.

The framework has two main limitations: the high com-
putational cost of blockchain searching operations and vul-
nerability to geometric transformations such as resizing and
rotation. Future work will focus on developing geometric-
invariant watermarking techniques. We also plan to implement
our solution on established blockchain platforms such as
Ethereum, utilizing smart contracts to automate watermark
verification and access control, which would enhance the sys-
tem’s scalability and interoperability in real-world healthcare
applications.

REFERENCES

[1] A. Lakhan, H. Hamouda, K. H. Abdulkareem, S. Alyahya, and M. A.
Mohammed, “Digital healthcare framework for patients with disabilities
based on deep federated learning schemes,” Computers in Biology and
Medicine, vol. 169, p. 107845, 2024.

[2] H. Guan, P-T. Yap, A. Bozoki, and M. Liu, “Federated learning for
medical image analysis: A survey,” Pattern Recognition, p. 110424,
2024.

[3] M. El Azzouzi, R. Bellafgira, G. Coatrieux, M. Cuggia, and G. Bouzille,
“Secure extraction of personal information from ehr by federated
machine learning,” in Digital Health and Informatics Innovations for
Sustainable Health Care Systems. 10S Press, 2024, pp. 611-615.

[4] K. A. Koutsopoulos, C. Thiimmler, A. A. Castillo, A. Abend, S. Covaci,
B. Ertl, G. Ledakis, S. Lorin, V. Thouvenot, S. Haddad et al., “Ar-
chitecture and design choices for federated learning in modern digital
healthcare systems,” in Federated Learning for Digital Healthcare
Systems. Elsevier, 2024, pp. 37-58.

[51 Y. Shang, M. Xue, L. Y. Zhang, Y. Zhang, and W. Liu, “Tracking the
leaker: An encodable watermarking method for dataset intellectual prop-
erty protection,” in Proceedings of the ACM Turing Award Celebration
Conference-China 2024, 2024, pp. 114-119.

[6] R. Bellafgira and G. Coatrieux, “Diction: Dynamic robust white box
watermarking scheme,” arXiv preprint arXiv:2210.15745, 2022.

[7]1 D. Niyitegeka, G. Coatrieux, R. Bellafgira, E. Genin, and J. Franco-
Contreras, “Dynamic watermarking-based integrity protection of ho-
momorphically encrypted databases—application to outsourced genetic
data,” in Digital Forensics and Watermarking: 17th International Work-
shop, IWDW 2018, Jeju Island, Korea, October 22-24, 2018, Proceed-
ings 17. Springer, 2019, pp. 151-166.

[8] R. Bellafqira, M. Al-Ghadi, E. Genin, and G. Coatrieux, “Robust
and imperceptible watermarking scheme for gwas data traceability,” in
International Workshop on Digital Watermarking. Springer, 2022, pp.
147-161.

[9] O. Faraj, D. Megias, and J. Garcia-Alfaro, “Zircon: Zero-watermarking-

based approach for data integrity and secure provenance in iot networks,”

Journal of Information Security and Applications, vol. 85, p. 103840,

2024.

J. Anderson, S. Lo, and T. Walter, “Authentication security of com-

binatorial watermarking for gnss signal authentication,” NAVIGATION:

Journal of the Institute of Navigation, vol. 71, no. 3, 2024.

D. Bouslimi, R. Bellafgira, and G. Coatrieux, “Data hiding in homo-

morphically encrypted medical images for verifying their reliability in

both encrypted and spatial domains,” in 2016 38th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC). 1EEE, 2016, pp. 2496-2499.

M. G. Lizama, J. Huesa, and B. M. Claudio, “Use of blockchain

technology for the exchange and secure transmission of medical images

in the cloud: Systematic review with bibliometric analysis,” ASEAN

Journal of Science and Engineering, vol. 4, no. 1, pp. 71-92, 2024.

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

[32]

S. Kumar, B. K. Singh, and M. Yadav, “A recent survey on multimedia
and database watermarking,” Multimedia Tools and Applications, vol. 79,
no. 27, pp. 20 149-20 197, 2020.

J. Guo, Y. Li, R. Chen, Y. Wu, C. Liu, and H. Huang, “Zeromark: To-
wards dataset ownership verification without disclosing watermark,” in
The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Y. Zhang, D. Ye, C. Xie, L. Tang, X. Liao, Z. Liu, C. Chen, and J. Deng,
“Dual defense: Adversarial, traceable, and invisible robust watermarking
against face swapping,” IEEE Transactions on Information Forensics and
Security, 2024.

7. Ma, G. Jia, B. Qi, and B. Zhou, “Safe-sd: Safe and traceable stable
diffusion with text prompt trigger for invisible generative watermarking,”
in Proceedings of the 32nd ACM International Conference on Multime-
dia, 2024, pp. 7113-7122.

X. Wang, X. Li, and Q. Pei, “Independent embedding domain based two-
stage robust reversible watermarking,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 30, no. 8, pp. 2406-2417, 2019.
L. Novamizanti, A. B. Suksmono, D. Danudirdjo, and G. Budiman,
“Robust reversible watermarking using stationary wavelet transform and
multibit spread spectrum in medical images.” International Journal of
Intelligent Engineering & Systems, vol. 15, no. 3, 2022.

F. Peng, X. Li, and B. Yang, “Improved pvo-based reversible data
hiding,” Digital Signal Processing, vol. 25, pp. 255-265, 2014.

L. Novamizanti, A. B. Suksmono, D. Danudirdjo, and G. Budiman, “Ro-
bust reversible image watermarking based on independent embedding
domain and pixel value ordering,” in 2023 IEEE 8th International Con-
ference on Recent Advances and Innovations in Engineering (ICRAIE).
IEEE, 2023, pp. 1-6.

P. Patel and H. Patel, “Achieving a secure cloud storage mechanism using
blockchain technology,” International Journal of Computer Theory and
Engineering, vol. 15, no. 3, pp. 130-142, 2023.

S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic
review of security vulnerabilities in ethereum blockchain smart contract,”
IEEE Access, vol. 10, pp. 6605-6621, 2022.

G. A. Pierro and R. Tonelli, “Can solana be the solution to the
blockchain scalability problem?” in 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1EEE,
2022, pp. 1219-1226.

E. Zaghloul, T. Li, M. W. Mutka, and J. Ren, “Bitcoin and blockchain:
Security and privacy,” IEEE Internet of Things Journal, vol. 7, no. 10,
pp. 10288-10313, 2020.

C. Liu, X. Chen, J. Li, S. Yang, and Y. Sun, “A novel data traceability
model based on blockchain and digital watermarking in edge comput-
ing,” in Journal of Physics: Conference Series, vol. 1682, no. 1. IOP
Publishing, 2020, p. 012041.

W. Peng, L. Yi, L. Fang, D. XinHua, and C. Ping, “Secure and traceable
copyright management system based on blockchain,” in 2019 IEEE 5th
International Conference on Computer and Communications (ICCC).
IEEE, 2019, pp. 1243-1247.

J. Zheng, S. Teng, P. Li, W. Ou, D. Zhou, and J. Ye, “A novel
video copyright protection scheme based on blockchain and double
watermarking,” Security and communication networks, vol. 2021, no. 1,
p. 6493306, 2021.

D. Rachmawati, J. Tarigan, and A. Ginting, “A comparative study of
message digest 5 (md5) and sha256 algorithm,” in Journal of Physics:
Conference Series, vol. 978. 10P Publishing, 2018, p. 012116.

K. A. El Drandaly, W. Khedr, I. S. Mohamed, and A. M. Mostafa, “Dig-
ital watermarking scheme for securing textual database using histogram
shifting model.” Computers, Materials & Continua, vol. 71, no. 3, 2022.
X.-y. Wang, J. Tian, J.-1. Tian, P.-p. Niu, and H.-y. Yang, “Statistical
image watermarking using local rhfms magnitudes and beta exponential
distribution,” Journal of Visual Communication and Image Representa-
tion, vol. 77, p. 103123, 2021.

V. Sisaudia and V. P. Vishwakarma, “A secure gray-scale image water-
marking technique in fractional dct domain using zig-zag scrambling,”
Journal of Information Security and Applications, vol. 69, p. 103296,
2022.

X. Zhou, Y. Ma, Q. Zhang, M. A. Mohammed, and R. DamaseviCius,
“A reversible watermarking system for medical color images: balancing
capacity, imperceptibility, and robustness,” Electronics, vol. 10, no. 9,
p. 1024, 2021.


https://www.researchgate.net/publication/392326845

